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Abstract
Automatic recognition of elderly and disordered speech remains
a highly challenging task to date. Such data is not only dif-
ficult to collect in large quantities, but also exhibits a signif-
icant mismatch against normal speech trained ASR systems.
To this end, conventional deep neural network model adapta-
tion approaches only consider parameter fine-tuning on lim-
ited target domain data. In this paper, a novel Bayesian para-
metric and neural architectural domain adaptation approach is
proposed. Both the standard model parameters and architec-
tural hyper-parameters (hidden layer L/R context offsets) of two
lattice-free MMI (LF-MMI) factored TDNN systems separately
trained using large quantities of normal speech from the English
LibriSpeech and Cantonese SpeechOcean corpora were domain
adapted to two tasks: a) 16-hour DementiaBank elderly speech
corpus; and b) 14-hour CUDYS dysarthric speech database.
A Bayesian differentiable architectural search (DARTS) super-
network was designed to allow both efficient search over up to
728 different TDNN structures during domain adaptation, and
robust modelling of parameter uncertainty given limited tar-
get domain data. Absolute recognition error rate reductions of
1.82% and 2.93% (13.2% and 8.3% relative) were obtained
over the baseline systems performing model parameter fine-
tuning only. Consistent performance improvements were re-
tained after data augmentation and learning hidden unit contri-
bution (LHUC) based speaker adaptation was performed.
Index Terms: speech recognition, domain adaptation, Bayesian
learning, neural architecture search

1. Introduction
Despite the rapid progress of automatic speech recognition
(ASR) technologies targeting normal speech [1–5] in the past
few decades, accurate recognition of atypical speech task do-
mains represented by, for example, elderly and dysarthric
speech, remains a highly challenging task to date [6–9].

Ageing presents enormous challenges to health care and
current speech technologies. Neurocognitive disorders (NCDs),
such as Alzheimer’s disease (AD), are often found among older
adults [10] and manifest themselves in speech and language im-
pairments including weakened neuro-motor control in speech
production and imprecise articulation [11, 12]. Speech disor-
ders such as dysarthria can also be caused by a range of other
conditions including cerebral palsy, amyotrophic lateral sclero-
sis, stroke or traumatic brain injuries [13]. People with speech
impairment often experience co-occurring physical disabilities
and mobility limitations.

∗ Equal contribution

Elderly and dysarthric speech exhibit a wide spectrum of
challenges for current deep neural networks (DNNs) based ASR
technologies that predominantly target normal speech. First, a
large mismatch between such data and non-aged, healthy adult
voice is often observed. Such difference manifests itself across
many fronts including articulatory imprecision, decreased vol-
ume and clarity, changes in pitch, increased dysfluencies and
slower speaking rate [14, 15]. State-of-the-art ASR systems
designed for normal speech often produce very high recogni-
tion error rate above 40% when being applied to elderly or im-
paired speech [9, 16, 17]. Second, the co-occurring disabilities,
mobility or accessibility limitations often found among elderly
and disordered speakers lead to the difficulty in collecting large
quantities of such data that are essential for current data inten-
sive deep learning based ASR system development.

To this end, a range of techniques designed to address the
above domain mismatch and data sparsity issues have been
studied in recent years primarily in the context of dysarthric
speech recognition. Motivated by the spectral-temporal level
differences of disordered speech from normal speech such as
slower speaking rates, recent research in data augmentation
has been largely focused on tempo-stretching [18], vocal tract
length perturbation (VTLP) [19], and speed perturbation [20]
of normal speech recorded from healthy control speakers. The
resulting “disordered like” speech carrying a slower speaking
rate and modified overall vocal tract spectral shape is then used
to augment the limited dysarthric speech training data. Alterna-
tive approaches based on cross-domain DNN model or feature
adaptation [21–23], domain adversarial training [24], transfer
learning [25, 26], knowledge distillation [27], and voice con-
version [28, 29] have also been investigated.

Among the above, model based domain adaptation ap-
proaches benefit not only from a tight integration of domain
dependently estimated parameters with the underlying speech
recognition error cost based on, for example, the lattice-free
maximum mutual information (LF-MMI) criterion [25], or se-
quence to sequence learning objective functions, for example,
used in recurrent neural network (RNN) transducers [22], but
also fine modelling granularity in adapted parameters when suf-
ficient target domain data is available.

However, there are two issues associated with model based
domain approaches when being applied to elderly or disordered
speech recognition tasks. First, due to the difficulty in collect-
ing large quantities of such data, and the often limited amounts
of existing elderly [30] or dysarthric speech datasets [31], direct
fine-tuning of large numbers of out of domain, normal speech
data estimated DNN model parameters on limited elderly or
dysarthric speech data is generally problematic. The severe data
sparsity issue and the resulting modelling uncertainty need to be
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addressed. Second, the underlying neural architecture designs
in current ASR systems are often designed using expert knowl-
edge and empirical evaluation within individual task domains,
for example, conversational telephone speech [32], or meet-
ing transcription [33]. For example, the left and right splicing
context offsets in the hidden layers of state-of-the-art LF-MMI
trained time delay neural network (TDNN) systems [3, 34] rep-
resent the range of temporal contexts that can be exploited in
modelling. The DementiaBank Pitt corpus [30], the largest pub-
licly available elderly speech database, contains 4.8 words per
utterance on average, in contrast to the normal speech data from
the LibriSpeech corpus [35] of approximately 31 words per ut-
terance. Similar designs based on shorter sentences also feature
in current dysarthric speech corpora [31].

In order to address these issues, a novel Bayesian para-
metric and neural architectural domain adaptation approach
is proposed in this paper. Both the standard model parame-
ters and architectural hyper-parameters (hidden layer left and
right context offsets1) of two LF-MMI factored TDNN sys-
tems separately trained using large quantities of normal speech
from the English LibriSpeech and Cantonese SpeechOcean cor-
pora were domain adapted to two tasks: a) 16-hour Dementia-
Bank elderly speech corpus; and b) 14-hour CUDYS dysarthric
speech database. Bayesian learning of differentiable architec-
tural search (DARTS) [38] super-network was employed to al-
low both efficient search over up to 728 different TDNN struc-
tures during domain adaptation, and robust modelling of pa-
rameter uncertainty given limited target domain data. Absolute
recognition error rate reductions of 1.82% and 2.93% (13.2%
and 8.3% relative) were obtained over the baseline systems per-
forming model parameter fine-tuning only. Consistent perfor-
mance improvements were retained after data augmentation and
learning hidden unit contribution (LHUC) based speaker adap-
tation was performed. To the best of our knowledge, this is the
first work to consider both parametric and architectural cross-
domain adaptation for elderly and dysarthric speech recogni-
tion. In contrast, the majority of previous researches on domain
adaptation for the same tasks have been focused on direct pa-
rameter fine-tuning [22, 23, 25, 26] while the data sparsity and
architecture mismatch issues remain unsolved.

The rest of this paper is organized as follows. Section
2 presents Bayesian domain adaptation of LF-MMI trained
TDNN systems. A novel differentiable architecture search ap-
proach automatically learning the L/R context offsets hyper-
parameters of Bayesian TDNN systems is proposed in Section
3. Section 4 presents the experiments and results. Finally, the
conclusions are drawn in Section 5.

2. Bayesian TDNN Adaptation
In contrast to conventional model adaptation methods perform-
ing fixed-value, deterministic parameter fine-tuning given lim-
ited target domain data, Bayesian adaptation approaches ad-
dress the data sparsity issue by modelling parameter uncertainty
using the following predictive distribution. Given an adaptation
data set D = {Or,Hr}, where Or and Hr are the r-th speech
utterance and the reference word sequences, respectively. The

1Prior researchers suggested [36, 37] that TDNN context offset set-
tings significantly affect the resulting system’s temporal modelling res-
olution and recognition performance, while other hyper-parameters, e.g.
the hidden layer dimensionality, were used to control the overall system
complexity, thus not considered here.

prediction over the r-th test utterance O∗r is given by

p(H∗r |O∗r ,D) =
∫
p(H∗r |O∗r ,w)p(w|D)dw (1)

where H∗r denotes the predicted word sequence for the test ut-
terance r, w is the Bayesian adaptation parameters and p(w|D)
is its posterior distribution learned from the adaptation data.

LF-MMI Trained TDNNs: TDNNs [39] produced state-
of-art performance on different tasks [34, 40, 41]. TDNN is
an instance of 1-dimension convolutional neural networks with
parameters tying over different time steps. The lower TDNN
layers are designed to learn narrower, local temporal contexts,
while the higher layers learn wider, longer range contexts. The
TDNN hidden left and right splicing context offsets are im-
portant hyper-parameters controlling its hierarchical temporal
modelling ability. This paper adopted the factored TDNN [40].

In contrast to the conventional cross entropy criterion, se-
quence level error costs more closely related recognition accu-
racy, for example, the MMI [1] criterion, is widely used in state-
of-the-art ASR systems [3, 42, 43].

FMMI(D;Θ) =
∑
r

log
p(Or|Hr)

κP (Hr)∑
Ĥr

p(Or|Ĥr)κP (Ĥr)
(2)

where Θ contains both hyper-parameters such as hidden layer
context offsets and normal TDNN weight parameters, κ is the
acoustic scaling factor and Ĥr is the possible word sequence in
the decoded speech lattice for utterance r. The efficient lattice-
free MMI training [3] that alleviates the explicit denominator
lattice generation is considered in this paper.

Bayesian TDNN Model Adaptation: During domain
adaptation, the parameter posterior distribution p(w|D) re-
quired in the form of Bayesian prediction in Eqn. (1) can be
learned by maximising the following MMI criterion marginali-
sation over all parameter estimates.

F = log

∫
exp{FMMI(D;Θ)}Pr(w)dw (3)

where w ∈ Θ and Pr(w) is the prior distribution of adapta-
tion parameters. Direct optimisation of the above integral is
nontrivial. An alternative more efficient variational inference is
utilized to learn the adaptation parameter posterior distribution
by optimising the following lower bound,

F ≥
∫
q(w)FMMI(D;Θ)dw −KL(q(w)||Pr(w))

= LMMI
1 − LMMI

2 = LMMI (4)

where q(w) is the variational approximation of the posterior
distribution p(w|D) and KL(q(w)||Pr(w)) is the Kullback-
Leibler (KL) divergence between q(w) and Pr(w). For effi-
ciency, and based on the previous research findings [41], both
q(w) = N (µ,σ2) and Pr(w) = N (µr,σ

2
r) are assumed

to be Gaussian distributions. The first term LMMI
1 is approxi-

mated with Monte Carlo sampling method, which is given by

LMMI
1 ≈ 1

N

∑N

k=1
FMMI(D;Θ,µ+ σ � εk) (5)

where εk is the k-th Monte Carlo sampling value drawn
from the standard normal distribution N (0, 1) and � is the
Hadamard product. The KL divergence based second term
LMMI

2 in Eqn. (4) can be explicitly calculated as

LMMI
2 =

1

2

∑
i

(
σ2
i + (µi − µr,i)2

σ2
r,i

+ 2 log
σr,i
σi
− 1) (6)
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where {µr,i, σr,i} and {µi, σi} are the i-th hyper-parameters
of the prior distribution {µr,σr} and variational distribution
{µ,σ}, respectively. The variational distribution parameters
are updated during back propagation.

Implementation Details over several crucial settings are:
1) The first TDNN layer parameters practically exhibit more
uncertainty due to the larger input data variability than those
observed at higher layers designed to produce more invariant
features. Based on our previous findings [41, 44], Bayesian
domain adaptation was applied to the first layer of all TDNN
systems in this paper, while the other higher layers parameters
were fine-tuned to the target domain data. 2) The prior for all
Bayesian adapted TDNN systems is based on the comparable
fully converged standard fixed-parameter fine-tuning adapted
TDNN systems. Other parameters in the Bayesian adapted
TDNN systems are initialized using those of the halfway fine-
tuned TDNN systems during adaptation. 3) The variational dis-
tribution variance is shared among all nodes of the first layer,
which allows the number of parameters in Bayesian adapted
TDNN system to be comparable to that of the standard fixed-
parameter adapted system. 4) For efficiency, only one param-
eter sample is drawn in Eqn. (5) to ensure the computational
cost in Bayesian adaptation to be comparable to that of the stan-
dard fine-tuning adapted TDNN system. During recognition
time, the predictive inference integral in Eqn. (1) is efficiently
approximated by the expectation of Bayesian adapted TDNN
model parameters.

3. TDNN Architecture Adaptation
The general problem of TDNN hyper-parameter domain adap-
tation is transformed into a domain adaptive neural architecture
search [36, 45] task within the DARTS [38] framework that
allows both the architecture hyper-parameters and TDNN, or
Bayesian TDNN parameters to be optimized consistently dur-
ing adaptation to elderly or disordered speech data. An over-
parameterized super-network containing paths connecting all
neural architecture candidates is trained first, before the selec-
tion weights over each neural architecture candidate within the
super-network are learned in the search stage. On convergence
of the super-network model, the optimal architecture is obtained
by pruning lower weighted paths. For example, the output hl of
l-th layer in the DARTS super-network is given by

hl =
∑Nl−1

i=0
λliφ

l
i(W

l
ih
l−1) (7)

where N l denotes the number of architecture candidate selec-
tions in the l-th layer and λli is the weight of the i-th architecture
candidate in the l-th layer. Wl

i and φli are the linear transforma-
tion parameter matrix and activation function for the i-th candi-
date system in the l-th layer, respectively.

Pipelined Gumbel-Softmax DARTS: In order to minimize
the confusion between different architectures found in conven-
tional Softmax based DARTS [38], a Gumbel-Softmax distri-
bution [46] is used to produce approximately a one-hot vector,
categorical architecture weights as the following

λli =
exp((logαli +Gli)/T )∑Nl−1

j=0 exp((logαlj +Glj)/T )
(8)

where αli is the parameter in the Gumbel-Softmax distribution,
Gli = - log(- log(U li ))) is the Gumbel variable, U li is a random
variable sampled from a uniform distribution. T is the temper-
ature hyper-parameter annealed from 1 to 0.03 in this paper.

Following [36, 46], the update of TDNN parameters and ar-

Affine 

layer

…

…

1/0 1/0 1/1

1/01/01/1

)Bayesian 

layer

Linear

layer

Figure 1 Example DARTS super-network for Bayesian TDNNs
(Bayesian layer in yellow square). Dashed lines in different
colors are different Left/Right context offsets. The blue integers
denote the super-network system using all context offsets, while
the red integers represent a candidate offset choice of ± 2.

chitecture weights were performed in two stages, in a pipelined
fashion, to avoid sub-optimal selection of architectures. In or-
der to prevent overfitting to the training data, a separate held-out
data set taken out of the original training data is used. In the first
stage, the TDNN parameters are updated to convergence using
the training data first, while randomly sampled one-hot archi-
tecture weights drawn from a uniform distribution are used in
back-propagation. In the second stage, the TDNN parameters
estimated in the first stage in the super-network are fixed and
the architecture weights are updated using the held-out data.

TDNN-F Context Offset Search Space: The context off-
sets of TDNNs are crucial for modeling long temporal infor-
mation in speech. Manually setting these hyper-parameters by
evaluating a large number of possible system configurations is
impractical. To this end, parameter sharing within the super-
network can be used [47]. As shown in Fig. 1, all possible
choices of context offsets to the left ({-d, 0}, ···, {1, 0}, {0, 0})
and right ({0, 0}, {0, 1}, · · ·, {0, d}) at each layer are incorpo-
rated into the TDNN-F super-network. The super-network de-
signed for a L hidden layers TDNN contains (d+1)2L possible
candidate models, each of which is indicated by setting the cor-
responding connecting weights as 1, while others as 0.

Architectural and Parametric Adaptation of Bayesian
TDNNs is performed in three stages: a) Architecture adapta-
tion is performed by first constructing a Bayesian TDNN super-
network shown in Fig. 1 that contains all possible hidden layer
context offset settings using the source domain data alone, be-
fore being adapted to the target domain. In this process, the
very large number of standard TDNN parameters, often in tens
of millions, are Bayesian adapted to ensure robustness on lim-
ited target domain data as described in Section 2, while the
comparatively much smaller number of architecture selection
weights, 2L(d+1) in total, linearly related to the number of
hidden layers L and maximum context offset d, are fine-tuned
during adaptation. b) Architecture search performed over the
resulting domain adapted Bayesian TDNN super-network will
then be searched over to produce the 1-best TDNN context
offset settings. c) Bayesian model adaptation is finally per-
formed by first constructing a TDNN system that features the
above adapted architecture configurations but uses the source
domain training data. The standard model parameters of this
prior TDNN system are then further adapted in a Bayesian fash-
ion to the target domain speech to produce the full architecture
plus parameter adapted system.

4. Experiments
The proposed Bayesian parametric and architectural domain
adaptation approach was investigated on two tasks for LF-
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MMI factored TDNN systems: 1) from the English LibriSpeech
speech corpus to DementiaBank elderly database; 2) from the
Cantonese SpeechOcean corpus to the CUDYS dysarthric data.

Experimental Setup: The data sets and the baseline sys-
tems used in the two adaptation tasks are described below.

English Elderly Adaptation Task: A 1000 Hour Lib-
riSpeech data set [35] is adopted as the source domain data. The
DementiaBank database [30] is the target domain data, which
includes 15.74-hour training set (9.72-hour elderly participant
and 6.03-hour investigator data) and 3.14-hour test set (1.93-
hour elderly participant and 1.21-hour investigator data) after
silence stripping [8]. The word and duration per utterance on
average in LibriSpeech (DementiaBank) corpus are 31 (4.8) and
11.3 (1.9) second, respectively. The training set was expanded
to 59 hours when speed perturbation was performed. A 4-gram
language model described in [8] was used.

Cantonese Dysarthric Adaptation Task: A Cantonese
CUDYS dysarthric speech corpus [31] containing a 14.09-hour
training set and 3.61-hour testing set with low and high intel-
ligibility groups after silence stripping and speed perturbation
[19] is utilized as the target domain data. 19.77-hour external
data extracted from 163-hour Cantonese SpeechOcean normal
speech corpus was mixed with 14.09-hour CUDYS training set
for source-domain acoustic model training. The word and du-
ration per utterance on average in the SpeechOcean (CUDYS)
data set are 9.3 (1.6) and 4.0 (1.6) second, respectively. A 80k
word 4-gram language model in [19] was used in recognition.

Baseline TDNN Systems: For the two domain adaptation
tasks, LF-MMI factored TDNNs of 14 (English) and 7 (Can-
tonese) hidden layers were used2, with the GMM-HMM system
configuration the same as [8]. 40-dim filter-bank input features
were used in both tasks. 100-dim i-vector features were ap-
pended for Librispeech and DementiaBank systems, while 3-
dim pitch features were used for Cantonese SpeechOcean and
CUDYS systems. For both tasks, the Bayesian architecture and
parameter adaptation procedure in Section 3 was performed3.

Table 1 WERs (%) of TDNN systems trained using LibriSpeech
or DementiaBank data alone, before domain adaptation of
model parameters and optionally architecture (context offsets)
w/o Bayesian estimation. (a,b) in the ”context offsets” column
denotes the context offsets {-a, 0} to left and {0, b} to right.
† denotes a statistically significant difference obtained over the
parametric fine-tuning baseline system (Sys. 3, 8, 13).

Sys. Data
sets

Domain adaptation Context offsets
1-th to 14-th layer

Data
aug.

LHUC
SAT

DEV. Eval. ALLArch. Para. PAR INV PAR INV

1 LIBRI 7 7
1,1 1,1 0,0 3,3 3,3 3,3 3,3
3,3 3,3 3,3 3,3 3,3 3,3 3,3 7 7 - - - - 99.59

2 DEMEN 7 7
same as Sys. (1)

7 7

51.16 22.01 38.78 21.53 36.34
3

LIBRI
−→

DEMEN

7 FineTune 49.70 20.77 38.97 21.31 35.28
4 7 Bayes [8, 41] 47.48 20.01 36.72 19.09 33.65†

5 DARTS FineTune 5,0 0,4 0,2 0,4 5,4 2,6 0,6
0,6 0,5 6,5 6,5 6,6 6,5 6,6 46.45 19.16 35.78 18.87 32.73†

6 Bayes Bayes 1,1 4,3 5,3 5,2 4,3 6,2 4,4
4,5 4,5 4,6 5,6 5,6 6,6 6,6 45.31 19.86 34.35 19.53 32.35†

7 DEMEN 7 7
same as Sys. (1)

3 7

46.94 20.06 36.97 19.98 33.53
8

LIBRI
−→

DEMEN

7 FineTune 46.91 19.29 36.64 20.09 33.15
9 7 Bayes[8, 41] 45.90 19.84 35.15 19.53 32.71

10 DARTS FineTune 0,6 0,5 5,5 4,5 6,6 6,5 0,6
0,6 0,6 0,6 0,5 0,6 0,6 6,5 45.25 18.94 35.46 21.09 32.19†

11 Bayes Bayes 1,1 4,6 4,5 4,4 4,4 3,3 3,6
4,3 4,5 6,6 6,6 6,6 6,5 6,6 44.56 19.66 33.68 17.87 31.81†

12 DEMEN 7 7
same as Sys. (1)

3 3

44.95 18.52 35.33 17.54 31.77
13 LIBRI

−→
DEMEN

7 FineTune 44.16 19.12 34.16 19.42 31.56
14 7 Bayes[8, 41] 44.08 19.11 34.22 18.87 31.52
15 DARTS FineTune same as Sys. (10) 43.75 18.37 33.84 19.53 31.04†

16 Bayes Bayes same as Sys. (11) 43.36 19.07 32.08 17.98 30.83†

Performance of English Elderly DementiaBank: Table 1

2The DARTS systems perform the search over 728 (English) and
714 (Cantonese) TDNN-F choices with the maximum contexts of ±6.

3A matched pairs sentence-segment word error based statistical sig-
nificance test was performed at a significance level α=0.05.

demonstrates the performance of the DementiaBank corpus.
Several trends are observed. First, the systems considering both
architectural and parametric adaptation (Sys. 5, 6) outperform
the corresponding systems only considering parameter adapta-
tion (Sys. 3, 4) by up to 2.55% absolute word error rate (WER)
reductions. Second, further improvement by 0.38% absolute
WER reduction was obtained in the Bayesian architectural and
parametric adapted systems (Sys. 6) over the corresponding ar-
chitectural and parametric adapted systems without Bayesian
estimation (Sys. 5). Finally, consistent performance improve-
ments were retained after data augmentation and LHUC based
speaker adaptation. In the cross-domain adapted systems, the
largest absolute WER reduction up to 2.93% was achieved by
the Bayesian parametric and architectural adapted system (Sys.
6) over the parameter fine-tuning system (Sys. 3).

Performance of Cantonese Dysarthric CUDYS: Results
conducted on the CUDYS corpus are presented in Table 2 with
similar trend to the DementiaBank task, absolute character er-
ror rate (CER) reductions of up to 1.61% were obtained in the
systems considering both architectural and parametric adapta-
tion (Sys. 6, 7) over the corresponding parameter fine-tuning
adapted systems (Sys. 4, 5). Second, the Bayesian architectural
and parametric adapted systems (Sys. 7, 12) perform the best
among other systems before and after speaker adaptation. In
the cross-domain systems, the greatest absolute CER reduction
up to 1.82% was obtained by the Bayesian parametric and ar-
chitectural adapted TDNN system (Sys. 7) over the parameter
fine-tuning TDNN system (Sys. 4).

Table 2 CERs (%) of TDNN systems trained using SpeechOcean
or CUDYS data alone, before domain adaptation of model
parameters and optionally architecture (context offsets) w/o
Bayesian estimation. † denotes a statis. sig. diff. obtained
over the parametric fine-tuning baseline system (Sys. 4, 9).

Sys. Data
sets

Domain adaptation Context offsets
1-th to 7-th layer

LHUC
SAT

DEV. Eval. ALLArch. Para. High Low High Low
1 SPOC

7 7 1,1 1,1 0,0 3,3 3,3 6,6 6,6 7
32.92 98.51 14.24 94.97 36.12

2 CUDY 9.94 88.09 1.30 85.89 19.80
3 SP. & CU. 7 7

same as Sys. (1)
7

4.97 85.32 0.72 70.36 15.37
4 SP. & CU.

−→
CUDY

7 FineTune 5.67 79.47 1.02 57.14 13.74
5 7 Bayes 4.13 74.68 0.90 52.30 12.22†

6 DARTS FineTune 5,6 6,6 6,6 5,6 6,6 6,5 6,6 5.14 71.17 1.17 48.88 12.13†

7 Bayes Bayes 6,4 5,6 6,6 6,6 6,6 6,6 6,6 4.77 66.06 1.49 49.05 11.92†

8 SP. & CU. 7 7
same as Sys. (1)

3

1.85 76.91 0.60 63.12 12.74
9 SP. & CU.

−→
CUDY

7 FineTune 1.91 75.74 0.44 52.07 11.15
10 7 Bayes 1.15 71.81 0.44 50.92 10.51†

11 DARTS FineTune same as Sys. (6) 2.01 67.87 0.40 45.49 9.96†

12 Bayes Bayes same as Sys. (7) 1.51 69.47 0.69 41.51 9.41†

5. Conclusions
The paper proposed a Bayesian parametric and neural archi-
tectural domain adaptation approach to rapidly port LF-MMI
trained TDNNs based state-of-the-art ASR systems developed
using large amounts of normal speech data to elderly and dis-
ordered speech task domains of more limited quantities. Ex-
perimental results suggest Bayesian adaptation can effectively
mitigate the risk of overfitting when directly cross domain fine-
tuning systems containing a large number of parameters. Ar-
chitecture adaptation can further improve the generalization of
systems using parameter adaptation only. Future research will
focus on the adaptation of more advanced neural architectures.
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